2-Distance Problems

Theorem 1. (Frankl-Wilson, 1981) If \mathscr{F} is an L-intersecting family in $2^{[n]}$, then $|\mathscr{F}| \leq \sum_{k=0}^{|L|}\binom{n}{k}$.

Proof. Let $\mathscr{F}=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ where $\left|A_{1}\right| \leq\left|A_{2}\right| \leq \cdots \leq\left|A_{m}\right|$. For $i \in[m]$, let $f_{i}(\boldsymbol{x})$ in \mathbb{R}^{n} by

$$
f_{i}(\boldsymbol{x})=\prod_{l \in L, l<\left|A_{i}\right|}\left(\boldsymbol{x} \cdot \mathbf{1}_{\boldsymbol{A}_{\boldsymbol{i}}}-l\right) .
$$

So $f_{i}(\boldsymbol{x})$ is a polynomial with n variables and with degree $\leq|L|$.
Claim 1: $f_{1}, f_{2}, \ldots, f_{m}$ are linearly independent.
Pf of Claim 1: Take $\mathbf{1}_{\boldsymbol{A}_{1}}, \mathbf{1}_{\boldsymbol{A}_{\mathbf{2}}}, \ldots, \mathbf{1}_{\boldsymbol{A}_{\boldsymbol{m}}}$, we have

- $f_{i}\left(\mathbf{1}_{\boldsymbol{A}_{\boldsymbol{i}}}\right)=\prod_{l \in L, l<\left|A_{i}\right|}\left(\left|A_{i}\right|-l\right)>0$
- $f_{i}\left(\mathbf{1}_{\boldsymbol{A}_{j}}\right)=\prod_{l \in L, l<\left|A_{i}\right|}\left(\left|A_{i} \cap A_{j}\right|-l\right)=0$

Because \mathscr{F} is L-intersecting $\Rightarrow \exists l \in L$ with $l=\left|A_{j} \cap A_{i}\right|$ and $l<\left|A_{i}\right|$.
Observation: All vector $\mathbf{1}_{\boldsymbol{A}_{\boldsymbol{j}}}$ are $0 / 1$ - vectors. Thus, we can define a new polynomial $\tilde{f}_{i}(\boldsymbol{x})$ from $f_{i}(\boldsymbol{x})$ by replacing all term x_{i}^{k} by x_{i}.

So for all $0 / 1-$ vectors \boldsymbol{v} we still have $\tilde{f}_{i}(\boldsymbol{v})=f_{i}(\boldsymbol{v})$. This also shows that $\tilde{f}_{1}, \tilde{f}_{2}, \ldots, \tilde{f}_{m}$ are linearly independent. We see each $\tilde{f}_{i}(\boldsymbol{x})$ is a linear combination of the monomials $\prod_{i \in I} x_{i}$ where $I \in[n]$ and $|I| \leqslant|L|$. And clearly the
number of each monomials is $\sum_{k=0}^{|L|}\binom{n}{k}$ which is also is the dimension of the space containing $\tilde{f}_{1}, \tilde{f}_{2}, \ldots, \tilde{f_{m}}$. So

$$
|\mathscr{F}|=|m| \leq \sum_{k=0}^{|L|}\binom{n}{k}
$$

Theorem 2. Let p be a prime and $L \leqslant Z_{p}=\{0,1, \ldots, p-1\}$. Let $\mathscr{F} \in 2^{[n]}$ be s.t.

- $|A| \notin L(\bmod P)$
- $|A \cap B| \in L(\bmod p)$ for $\forall A \neq B \in \mathscr{F}$

Then $|\mathscr{F}| \leq \sum_{k=0}^{|L|}\binom{n}{k}$
Proof. All operations are $\bmod p$. Define $f_{i}(\boldsymbol{x})$ over Z_{p}^{n} for each set in $\mathscr{F}=$ $\left\{A_{1}, \ldots, A_{m}\right\}$ by

$$
f_{i}(\boldsymbol{x})=\prod_{l \in L}\left(\boldsymbol{x} \cdot \mathbf{1}_{\boldsymbol{A}_{\boldsymbol{i}}}-l\right) .
$$

Then

- $f_{i}\left(\mathbf{1}_{\boldsymbol{A}_{\boldsymbol{i}}}\right)=\prod_{l \in L}\left(\left|A_{i}\right|-l\right) \neq 0(\bmod p)$
- $f_{i}\left(\mathbf{1}_{\boldsymbol{A}_{\boldsymbol{j}}}\right)=\prod_{l \in L}\left(\left|A_{i} \cap A_{j}\right|-l\right)=0(\bmod p)$ for $i \neq j$

So $f_{1}, f_{2}, \ldots, f_{m}$ are linearly independent over Z_{p}^{n}.
The remaining proof is identical to the proof of Thm 1

$$
\Rightarrow|\mathscr{F}|=m \leq \sum_{k=0}^{|L|}\binom{n}{k}
$$

Theorem 3. (Frankl-Wilson) For any prime p, there is a graph G on $n=$ $\binom{p^{3}}{p^{2}-1}$ vertices s.t. the size of minimum clique or maximum independent set is $\leqslant \sum_{i=0}^{p-1}\binom{p^{3}}{i}$

Proof. Let $G=(V, E)$ be as follows:

- $V=\left(\begin{array}{c}{\left[\begin{array}{c} \\ \left.p^{2}\right] \\ p^{2}-1\end{array}\right)}\end{array}\right.$
- for $A, B \in V, A \sim_{G} B$ iff $|A \cap B|=p-1(\bmod p)$

Consider the max clique with vertices sat $A_{1}, A_{2}, \ldots, A_{m} \in\binom{\left[p^{3}\right]}{p^{2}-1}$
Thus we have

- $\left|A_{i} \cap A_{j}\right| \neq p-1(\bmod p)$, for $i \neq j$
- $\left|A_{i}\right|=p^{2}-1=p-1(\bmod p)$

By Thm 2 with $L=\{0,1,2, \ldots, p-2\} \subseteq Z_{p}$ we have $m \leqslant \sum_{i=0}^{p-1}\binom{p^{3}}{i}$
Consider the maximum independent set, say $B_{1}, B_{2}, \ldots, B_{s}$, then $\mid B_{i} \cap$ $B_{j} \mid=p-1(\bmod p)$ for $i \neq j$. So $\left|B_{i} \cap B_{j}\right| \in\{p-1,2 p-1, \ldots, p(p-1)-1\}=L^{*}$ with $\left|L^{*}\right|=p-1$.

By Thm 1 with L^{*} we have $s \leqslant \sum_{i=0}^{p-1}\binom{p^{3}}{i}$

Corollary 4.

$$
R(k+1, k+1) \geqslant k^{\Theta\left(\frac{\log (k)}{\log (\log (k))}\right)}
$$

Proof. Let $k=\sum_{i=0}^{p-1}\binom{p^{3}}{i}, n=\binom{p^{3}}{p^{2}-1}$.

$$
\Rightarrow k \simeq\binom{p^{3}}{p} \simeq\left(p^{2}\right)^{p} \simeq p^{2 p}, n \simeq\left(\frac{p^{3}}{p^{2}}\right)^{p^{2}} \simeq p^{p^{2}}
$$

$$
\begin{gathered}
\Rightarrow \log (k) \simeq \Theta(p \log (p)) \\
\Rightarrow \log (\log (p)) \simeq \log (p) \\
\Rightarrow p=\Theta\left(\frac{\log (k)}{\log (\log (k))}\right), n \simeq\left(p^{2 p}\right)^{p / 2} \simeq k^{\Theta\left(\frac{\log (k)}{\log (\log (k))}\right)}
\end{gathered}
$$

Definition 5. Given a set $S \subseteq R^{n}$ (bounded), the diameter of S is defined as $\operatorname{Diam}(S)=\sup \{d(x, y): x, y \in S\}$ (Euclidean distance between x and y in R^{n})

Borswk's Conjecture: Every bounded $S \subseteq R^{n}$ can be partitioned into $d+1$ sets of strictly smaller diameter.

This was verified for all $S \subseteq R^{n}$ with $d \leqslant 3$ and for all $S=$ sphere. However, using Thm 1 and 2 one show this is false!

Lemma 6. For prime p, there is a set of $\frac{1}{2}\binom{4 p}{2 p}$ vectors in $\{-1,1\}^{4 p}$ s.t. every subset of size $2\binom{4 p}{p-1}$ vectors contains an orthogonal pair of vectors.

Proof. Let $\mathrm{Q}=\left\{I \in\binom{[4 p]}{2 p}: 1 \in I\right\}$, then $|Q|=\frac{1}{2}\binom{4 p}{2 p}$.
For $\forall I \in Q$, define $\boldsymbol{v}^{I} \in\{-1,1\}^{4 p}$ by

$$
\boldsymbol{v}_{\boldsymbol{i}}=\left\{\begin{array}{l}
1, i \in I \\
-1, i \notin I
\end{array}\right.
$$

Claim: $\boldsymbol{v}^{I} \perp \boldsymbol{v}^{J}$ iff $|I \cap J| \equiv 0(\bmod p)$. Let $\mathscr{F}=\left\{\boldsymbol{v}^{I}: I \in Q\right\}$ with $|\mathscr{F}|=|Q|=\frac{1}{2}\binom{4 p}{2 p}$.

Proof. $\boldsymbol{v}^{I} \cdot \boldsymbol{v}^{J}=|I \cap J|-\left|I^{C} \cap J\right|-\left|I \cap J^{C}\right|+\left|I^{C} \cap J^{C}\right|=4 p-2|I \Delta J|$
So $\boldsymbol{v}^{I} \perp \boldsymbol{v}^{J}$ iff $|I \Delta J|=2 p=4 p-2|I \cap J|$ iff $|I \cap J|=p$

Claim: For any subset $\mathscr{G} \subset \mathscr{F}$ without orthogonal pairs, then $|\mathscr{G}| \leq$ $\sum_{k=0}^{p-1}\binom{4 p}{k}<2\binom{4 p}{p-1}$.

Proof. Consider the corresponding subset $Q^{\prime} \subset Q$ of \mathscr{G}, i.e. $Q^{\prime}=\{I \in Q$: $\boldsymbol{v}^{I} \in \mathscr{G}$. By claim $1, \mathrm{Q}^{\prime}$ is a subfamily of $\binom{[4 p]}{2 p}$ such that

- $|A|=2 p \equiv 0(\bmod p), \forall A \in Q^{\prime}$
- $|A \cap B| \neq 0(\bmod p), \forall A \neq B \in Q^{\prime}$

By thm 2, $|\mathscr{G}|=\left|Q^{\prime}\right| \leq \sum_{k=0}^{p-1}\binom{4 p}{k}$.
\Longrightarrow maximal subset without orthogonal pairs $\leq \sum_{k=0}^{p-1}\binom{4 p}{k}<2\binom{4 p}{p-1}$.
Theorem 7. For sufficiently large d, there exists a bounded set $S \subset \mathbb{R}^{d}$ (a finite set) such that any partition of S into $|\cdot|^{\sqrt{d}}$ subsets contains a subset of the same diameter.

Remark. As $|\cdot|^{\sqrt{d}} \gg d+1$ for large d , this disproves Borsuk's conj.
Definition 8. A tensor product of vectors $\boldsymbol{v} \in \mathbb{R}^{n}$ is $\boldsymbol{w}=\boldsymbol{v} \otimes \boldsymbol{v} \in \mathbb{R}^{n^{2}}$ by $w_{i j}=v_{i} \cdot v_{j}$ for all $1 \leq i, j \leq n$

Proof. Take the family \mathscr{F} from the lemma, so $\mathscr{F} \subset\{-1,1\}^{n}$ (where $\left.\mathrm{n}=4 \mathrm{p}\right) \subset$ \mathbb{R}^{n}. Let $X=\{\boldsymbol{v} \otimes \boldsymbol{v}: \boldsymbol{v} \in \mathscr{F}\}$ s.t. $X \subset \mathbb{R}^{n^{2}}$. For any $\boldsymbol{w}=\boldsymbol{v} \otimes \boldsymbol{v} \in X$,

$$
\begin{aligned}
\|\boldsymbol{w}\|^{2}=\sum_{1 \leq i, j \leq n} w_{i j}^{2}= & \sum_{1 \leq i, j \leq n} v_{i}^{2} v_{j}^{2}=\left(\sum_{i=1}^{n} v_{i}^{2}\right)\left(\sum_{j=1} v_{j}^{2}\right)=n^{2} \\
& \Longrightarrow\|\boldsymbol{w}\|=n
\end{aligned}
$$

For $\boldsymbol{w}=\boldsymbol{v} \otimes \boldsymbol{v}, \boldsymbol{w}^{\prime}=\boldsymbol{v}^{\prime} \otimes \boldsymbol{v}^{\prime} \in X$, we have

$$
\boldsymbol{w} \cdot \boldsymbol{w}^{\prime}=\sum_{1 \leq i, j \leq n} w_{i j} w_{i j}^{\prime}=\sum_{1 \leq i, j \leq n}\left(v_{i} v_{i}^{\prime}\right)\left(v_{j} v_{j}^{\prime}\right)=\left(\sum v_{i} v_{i}^{\prime}\right)^{2}=\left(\boldsymbol{v} \cdot \boldsymbol{v}^{\prime}\right)^{2} .
$$

This implies that

$$
\boldsymbol{w} \perp \boldsymbol{w}^{\prime} \Longleftrightarrow \boldsymbol{v} \perp \boldsymbol{v}^{\prime}
$$

Also, $\left\|\boldsymbol{w}-\boldsymbol{w}^{\prime}\right\|^{2}=\|\boldsymbol{w}\|^{2}+\left\|\boldsymbol{w}^{\prime}\right\|^{2}-2 \boldsymbol{w} \cdot \boldsymbol{w}^{\prime}=2 n^{2}-2\left(\boldsymbol{v} \cdot \boldsymbol{v}^{\prime}\right)^{2} \leq 2 n^{2}$

$$
\Longrightarrow\left\{\begin{array}{l}
\operatorname{Diam}(X)=\sqrt{2} n \\
|X|=|\mathscr{F}|=\frac{1}{2}\binom{[4 p]}{2 p}
\end{array}\right.
$$

By the lemma, any subset of $2\binom{4 p}{p-1}$ vectors in \mathscr{F} contains an orthogonal pair of vector $\boldsymbol{v} \& \boldsymbol{v}^{\prime}$. Thus, any subset of $2\binom{4 p}{p-1}$ vectors in X must contain a pair $\boldsymbol{w}=\boldsymbol{v} \otimes \boldsymbol{v}, \boldsymbol{w}^{\prime}=\boldsymbol{v}^{\prime} \otimes \boldsymbol{v}^{\prime}$ with $\boldsymbol{v} \perp \boldsymbol{v}^{\prime}$ and thus of the maximum distance $\left\|\boldsymbol{w}-\boldsymbol{w}^{\prime}\right\|=\sqrt{2} n$. Thus, if we want to decrease the diameter, we must partition X into subsets, each of which has less than $2\binom{4 p}{p-1}$ vectors, so the number of subsets is at least

$$
\frac{|X|}{2\binom{4 p}{p-1}}=\frac{\frac{1}{2}\binom{4 p}{2 p}}{2\binom{4 p}{p-1}}=\frac{1}{4} \frac{(3 p+1) \cdots 92 p+1)}{(2 p) \cdots(p)} \geq \frac{1}{4} \cdot\left(\frac{3}{2}\right)^{p+1} \geq C \cdot\left(\frac{3}{2}\right)^{\frac{\sqrt{d}}{4}} \geq 1 \cdot 1^{\sqrt{d}} .
$$

where $d=n^{2}=16 p^{2}$ is the dimension of X .

Bollobás' Thm

Recall: (Sperner's Thm)
Let $\mathscr{F} \subset 2^{[n]}$ be: $\forall A \neq B \in \mathscr{F}, A \subsetneq B, B \subsetneq A$, then $|\mathscr{F}| \leq\binom{ n}{\left\lfloor\frac{n}{2}\right\rfloor}$.
LYM-Inequality: For such $\mathscr{F}, \sum_{A \in \mathscr{F}} \frac{1}{\binom{n}{|A|}} \leq 1$.

Theorem 9. (Bollobás' Thm) Let $A_{1}, A_{2}, \ldots, A_{m}$ and $B_{1}, B_{2}, \ldots, B_{m}$ be the sequences of sets in [n] s.t.

- $A_{i} \cap B_{j} \neq \phi, \forall i \neq j$
- $A_{i} \cap B_{i}=\phi, \forall i$.

Then,

$$
\sum_{i=1}^{m} \frac{1}{\binom{a_{i}+b_{i}}{a_{i}}} \leq 1
$$

where $a_{i}=\left|A_{i}\right|, b_{i}=\left|B_{i}\right|$.
Remark. Condition: $A_{i} \cap B_{j} \neq \phi, \forall i \neq j$ can't be weakened to $\mathrm{i}<\mathrm{j}$, or the base case doesn't hold any more. Counter example:

- $A_{1}=\{1\}=B_{2}, A_{2}=B_{1}=\phi$.
- $A_{1}=\{1\}=B_{2}, A_{2}=\{3\}=B_{1}, A_{3}=\{3\}, B_{3}=\{1,2\}$

Remark. Bollobás $\Longrightarrow L Y M \Longrightarrow$ Sperner's
Proof. Let $X=\cup_{i=1}^{m}\left(A_{i} \cup B_{i}\right)$. We prove by induction on $n=|X|$.
Base case: $n=1 \leftrightarrow A_{1}=\{1\} ; B_{1}=\phi$, OK.
Assume this holds for $|X| \leq n-1$. For $\forall x \in X$, define $I_{x}=\{1 \leq i \leq m$: $\left.x \notin A_{i}\right\}$.

Define $\mathscr{F}_{x}=\left\{A_{i}: i \in I_{x}\right\} \cup\left\{B_{i}-\{x\}: i \in I_{x}\right\}$. Note that any set of _ doesn't contain x, so \mathscr{F}_{x} has less than n elements. Hence we apply induction hypothesis for each \mathscr{F}_{x} to get:

$$
\begin{equation*}
\sum_{i \in I_{x}} \frac{1}{\substack{\left|A_{i}\right|+\left|B_{i}-\{x\}\right| \\\left|A_{i}\right|}} \leq 1 \tag{1}
\end{equation*}
$$

We summing up the above inequalities for all $x \in X$ to get:

$$
\begin{equation*}
\sum_{x \in X} \sum_{i \in I_{x}} \frac{1}{\binom{\left|A_{i}\right|+\left|B_{i}-\{x\}\right|}{\left|A_{i}\right|}} \leq n \tag{2}
\end{equation*}
$$

For each i, it contributes either 0, or $\frac{1}{\binom{a_{i}+b_{i}}{a_{i}}}$ or $\frac{1}{\binom{a_{i}+b_{i}-1}{a_{i}}}$ to each x. The term $\frac{1}{\binom{a_{i}+b_{i}}{a_{i}}}$ corresponds to points $x \notin A_{i} \cup B_{i}$, thus this term appears exactly $\left(n-a_{i}-b_{i}\right)$ times.

While, the term $\frac{1}{\binom{a_{i}+b_{i-1}-1}{a_{i}}}$ corresponds to points $x \notin A_{i} \& x \in B_{i}$, thus this term appears exactly b_{i} times.

$$
(2) \Longrightarrow \sum_{i=1}^{m}\left[\left(n-a_{i}-b_{i}\right) \frac{1}{\binom{a_{i}+b_{i}}{a_{i}}}+b_{i} \frac{1}{\binom{a_{i}+b_{i}-1}{a_{i}}}\right] \leq n
$$

Since $\frac{\binom{k-1}{l}}{\binom{k}{l}}=\frac{k-l}{k}$, we get $\frac{1}{\binom{a_{i}+b_{i}-1}{a_{i}}}=\frac{1}{\binom{a_{i}+b_{i}}{a_{i}}} \cdot \frac{a_{i}+b_{i}}{b_{i}}$, plugging in,

$$
\begin{aligned}
& \sum_{i=1}^{m}\left[\left(n-a_{i}-b_{i}\right) \frac{1}{\binom{a_{i}+b_{i}}{a_{i}}}+\frac{a_{i}+b_{i}}{\binom{a_{i}+b_{i}}{a_{i}}}\right] \leq n \\
& \Longleftrightarrow \sum_{i-1}^{m} n \cdot \frac{1}{\binom{a_{i}+b_{i}}{a_{i}}} \leq n \\
& \Longleftrightarrow \sum_{i=1}^{m} \frac{1}{\binom{a_{i}+b_{i}}{a_{i}}} \leq n
\end{aligned}
$$

Definition 10. Let \mathbb{F} be a field, a set $A \subset \mathbb{F}^{n}$ is general position if any n vectors in A are linearly independant over \mathbb{F}.

Examples. For $a \in \mathbb{F}$, define $\boldsymbol{m}(a)=\left(1, a, a^{2}, \ldots, a^{n-1}\right) \in \mathbb{F}^{n}$ (moment curve). Then $\{\boldsymbol{m}(a): a \in \mathbb{F}$ is a general position.

Next, we use the so-called "general position" argument to prove a version of Bollobás's Thm, which is weaker than the previous one. But, on the other hand, the condition can be generalized to $A_{i} \cap B_{j} \neq \phi$ for $\forall i<j$.

Theorem 11. (Bollobás' Thm(the skew version)) Let A_{1}, \ldots, A_{m} be sets of size r and B_{1}, \ldots, B_{m} be the sets of size s, such that:

- $A_{i} \cap B_{j} \neq \phi, \forall i \neq j$
- $A_{i} \cap B_{i}=\phi, \forall i$.

Then,

$$
m \leq\binom{ r+s}{s}
$$

Proof. (By Lovász): Let $\mathrm{X}=\cup_{i}\left(A_{i} \cup B_{i}\right)$.
Take a set $V \subset \mathbb{R}^{r+1}$ of vectors $\boldsymbol{v}=\left(v_{0}, v_{1}, \ldots, v_{r}\right)$ such that

- V is in general position
- $|V|=|X|$

Identify the elements of X with vectors in V . Hence, we will view A_{i} as a subset in V containing r vectors and B_{j} as a subset in V containing s vectors.

For each B_{j}, define $f_{j}(\boldsymbol{x})=\prod_{\boldsymbol{v} \in B_{j}}<\boldsymbol{v}, \boldsymbol{x}>=\prod_{\boldsymbol{v} \in B_{j}}\left(v_{0} x_{0}+\cdots+v_{r} x_{r}\right)$. For $x \in \mathbb{R}^{r+1}$, note that

$$
\begin{equation*}
f_{j}(\boldsymbol{x})=0 \quad \text { iff } \quad<\boldsymbol{v}, \boldsymbol{x}>=0 \quad \text { for } \quad \text { some } \quad \boldsymbol{v} \in B_{j} . \tag{3}
\end{equation*}
$$

Consider the subspace span A_{i}, which is spanned by the r vector in A_{i}, since $A_{i} \subset V \subset \mathbb{R}^{r+1}$ and V is in general position, we see that all r vectors in
A_{i} are linearly independent and thus $\operatorname{dim}\left(\operatorname{span} A_{i}\right)=r . \operatorname{So},\left(\operatorname{span} A_{i}\right)^{\perp}$ has dimension 1. Choose $\boldsymbol{a}_{i} \in\left(\operatorname{span} A_{i}\right)^{\perp}$ for $\mathrm{i}=1, \ldots, \mathrm{~m}$. Then for each $\boldsymbol{v} \in V$,

$$
\begin{equation*}
<\boldsymbol{v}, \boldsymbol{a}_{i}>=0 \quad \text { iff } \quad \boldsymbol{v} \in \operatorname{span}_{i} \quad \text { iff } \quad \boldsymbol{v} \in A_{i} . \tag{4}
\end{equation*}
$$

(O.W. $\boldsymbol{v} \notin A_{i},\{\boldsymbol{v}\} \cup A_{i}$ has $\mathrm{r}+1$ vectors in V , which must be linearly independent, contradicting to $\boldsymbol{v} \in \operatorname{span} A_{i}$)

Combing (3)\&(4), $f_{j}\left(\boldsymbol{a}_{i}\right)=\prod_{\boldsymbol{v} \in B_{j}}<\boldsymbol{v}, \boldsymbol{a}_{i}>=0$ iff $A_{i} \cap B_{j} \neq \phi$

$$
\Longrightarrow\left\{\begin{array}{l}
f_{j}\left(\boldsymbol{a}_{i}\right)=0, \forall i<j \\
f_{j}\left(\boldsymbol{a}_{i}\right) \neq 0, \forall j
\end{array}\right.
$$

This shows that f_{1}, \ldots, f_{m} are linearly independent.
Next, we give an upper bound on the dimension of the space containing f_{1}, \ldots, f_{m}.

Recall: $f_{j}(\boldsymbol{x})=\prod_{\boldsymbol{v} \in B_{j}}\left(v_{0} x_{0}+\cdots+v_{r} x_{r}\right)$, it is homogeneous with degree $s=\left|B_{j}\right|$ and $\mathrm{r}+1$ variables $\left(x_{0}, x_{1}, \ldots, x_{r}\right)$. So this polynomial space can be generated by all monomials of follows:

$$
x_{0}^{i_{0}} x_{1}^{i_{1}} \cdots x_{r}^{i_{r}}, \quad \text { where } \quad i_{0}+i_{1}+\cdots+i_{r}=s, i_{j} \geq 0
$$

There are $\binom{r+s}{r}$ many solutions! So $m \leq$ the dimension $=\binom{r+s}{s}$.

