
Combinatorics, 2016 Fall, USTC

Week 16, Dec 20&22

2-Distance Problems

Theorem 1. (Frankl-Wilson, 1981) If F is an L-intersecting family in 2[n],

then |F | ≤
∑|L|

k=0

(
n
k

)
.

Proof. Let F = {A1, A2, ..., Am} where |A1| ≤ |A2| ≤ · · · ≤ |Am|. For

i ∈ [m], let fi(x) in Rn by

fi(x) =
∏

l∈L,l<|Ai|

(x · 1Ai
− l).

So fi(x) is a polynomial with n variables and with degree≤ |L|.

Claim 1: f1, f2, ..., fm are linearly independent.

Pf of Claim 1: Take 1A1 ,1A2 , ...,1Am , we have

� fi(1Ai
) =

∏
l∈L,l<|Ai|(|Ai| − l) > 0

� fi(1Aj
) =

∏
l∈L,l<|Ai|(|Ai ∩ Aj| − l) = 0

Because F is L-intersecting ⇒ ∃l ∈ L with l = |Aj ∩ Ai| and l < |Ai|.

Observation: All vector 1Aj
are 0/1− vectors. Thus, we can de�ne a

new polynomial f̃i(x) from fi(x) by replacing all term xki by xi.

So for all 0/1− vectors v we still have f̃i(v) = fi(v). This also shows that

f̃1, f̃2, ..., f̃m are linearly independent. We see each f̃i(x) is a linear combina-

tion of the monomials
∏

i∈I xi where I ∈ [n] and |I| 6 |L|. And clearly the

1



number of each monomials is
∑|L|

k=0

(
n
k

)
which is also is the dimension of the

space containing f̃1, f̃2, ..., f̃m. So

|F | = |m| ≤
|L|∑
k=0

(
n

k

)

Theorem 2. Let p be a prime and L 6 Zp = {0, 1, ..., p − 1}. Let F ∈ 2[n]

be s.t.

� |A| /∈ L(mod P )

� |A ∩B| ∈ L(mod p) for ∀A 6= B ∈ F

Then |F | ≤
∑|L|

k=0

(
n
k

)
Proof. All operations are mod p. De�ne fi(x) over Zn

p for each set in F =

{A1, ..., Am} by

fi(x) =
∏
l∈L

(x · 1Ai
− l).

Then

� fi(1Ai
) =

∏
l∈L(|Ai| − l) 6= 0(mod p)

� fi(1Aj
) =

∏
l∈L(|Ai ∩ Aj| − l) = 0(mod p) for i 6= j

So f1, f2, ..., fm are linearly independent over Zn
p .

The remaining proof is identical to the proof of Thm 1

⇒ |F | = m ≤
|L|∑
k=0

(
n

k

)
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Theorem 3. (Frankl-Wilson) For any prime p, there is a graph G on n =(
p3

p2−1

)
vertices s.t. the size of minimum clique or maximum independent set

is 6
∑p−1

i=0

(
p3

i

)
Proof. Let G = (V,E) be as follows:

� V =
(

[p3]
p2−1

)
� for A,B ∈ V , A ∼G B i� |A ∩B| = p− 1(mod p)

Consider the max clique with vertices sat A1, A2, ..., Am ∈
(

[p3]
p2−1

)
Thus we have

� |Ai ∩ Aj| 6= p− 1(mod p), for i 6= j

� |Ai| = p2 − 1 = p− 1(mod p)

By Thm 2 with L = {0, 1, 2, ..., p− 2} ⊆ Zp we have m 6
∑p−1

i=0

(
p3

i

)
Consider the maximum independent set, say B1, B2, ..., Bs, then |Bi ∩

Bj| = p−1(mod p) for i 6= j. So |Bi∩Bj| ∈ {p−1, 2p−1, ..., p(p−1)−1} = L∗

with |L∗| = p− 1.

By Thm 1 with L∗ we have s 6
∑p−1

i=0

(
p3

i

)
Corollary 4.

R(k + 1, k + 1) > k
Θ(

log(k)

log(log(k))
)

Proof. Let k =
∑p−1

i=0

(
p3

i

)
, n =

(
p3

p2−1

)
.

⇒ k '
(
p3

p

)
' (p2)p ' p2p, n ' (

p3

p2
)p

2 ' pp
2
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⇒ log(k) ' Θ(p log(p))

⇒ log(log(p)) ' log(p)

⇒ p = Θ(
log(k)

log(log(k))
), n ' (p2p)p/2 ' k

Θ(
log(k)

log(log(k))
)

De�nition 5. Given a set S ⊆ Rn (bounded), the diameter of S is de�ned

as Diam(S) = sup{d(x, y) : x, y ∈ S}(Euclidean distance between x and y

in Rn)

Borswk's Conjecture: Every bounded S ⊆ Rn can be partitioned into

d+ 1 sets of strictly smaller diameter.

This was veri�ed for all S ⊆ Rn with d 6 3 and for all S = sphere.

However, using Thm 1 and 2 one show this is false!

Lemma 6. For prime p, there is a set of 1
2

(
4p
2p

)
vectors in {−1, 1}4p s.t. every

subset of size 2
(

4p
p−1

)
vectors contains an orthogonal pair of vectors.

Proof. Let Q={I ∈
(

[4p]
2p

)
: 1 ∈ I}, then |Q| = 1

2

(
4p
2p

)
.

For ∀I ∈ Q, de�ne vI ∈ {−1, 1}4p by

vi =

 1, i ∈ I

− 1, i /∈ I

Claim: vI ⊥ vJ i� |I ∩ J | ≡ 0(modp). Let F = {vI : I ∈ Q} with

|F | = |Q| = 1
2

(
4p
2p

)
.

Proof. vI · vJ = |I ∩ J | − |IC ∩ J | − |I ∩ JC |+ |IC ∩ JC | = 4p− 2|I∆J |

So vI⊥vJ i� |I∆J | = 2p = 4p− 2|I ∩ J | i� |I ∩ J | = p
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Claim: For any subset G ⊂ F without orthogonal pairs, then |G | ≤∑p−1
k=0

(
4p
k

)
< 2
(

4p
p−1

)
.

Proof. Consider the corresponding subset Q′ ⊂ Q of G , i.e. Q′ = {I ∈ Q :

vI ∈ G . By claim 1, Q' is a subfamily of
(

[4p]
2p

)
such that

� |A| = 2p ≡ 0(modp),∀A ∈ Q′

� |A ∩B| 6= 0(modp),∀A 6= B ∈ Q′

By thm 2, |G | = |Q′| ≤
∑p−1

k=0

(
4p
k

)
.

=⇒ maximal subset without orthogonal pairs≤
∑p−1

k=0

(
4p
k

)
< 2
(

4p
p−1

)
.

Theorem 7. For su�ciently large d, there exists a bounded set S ⊂ Rd(a

�nite set) such that any partition of S into | · |
√
d subsets contains a subset of

the same diameter.

Remark. As | · |
√
d >> d+ 1 for large d, this disproves Borsuk's conj.

De�nition 8. A tensor product of vectors v ∈ Rn is w = v ⊗ v ∈ Rn2
by

wij = vi · vj for all 1 ≤ i, j ≤ n

Proof. Take the family F from the lemma, so F ⊂ {−1, 1}n(where n=4p)⊂

Rn. Let X = {v ⊗ v : v ∈ F} s.t. X ⊂ Rn2
. For any w = v ⊗ v ∈ X,

||w||2 =
∑

1≤i,j≤n

w2
ij =

∑
1≤i,j≤n

v2
i v

2
j = (

n∑
i=1

v2
i )(
∑
j=1

v2
j ) = n2

=⇒ ||w|| = n
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For w = v ⊗ v,w′ = v′ ⊗ v′ ∈ X, we have

w ·w′ =
∑

1≤i,j≤n

wijw
′
ij =

∑
1≤i,j≤n

(viv
′
i)(vjv

′
j) = (

∑
viv
′
i)

2 = (v · v′)2.

This implies that

w ⊥ w′ ⇐⇒ v ⊥ v′

Also, ||w −w′||2 = ||w||2 + ||w′||2 − 2w ·w′ = 2n2 − 2(v · v′)2 ≤ 2n2

=⇒


Diam(X) =

√
2n

|X| = |F | = 1

2

(
[4p]

2p

)
By the lemma, any subset of 2

(
4p
p−1

)
vectors in F contains an orthogonal

pair of vector v&v′. Thus, any subset of 2
(

4p
p−1

)
vectors in X must contain

a pair w = v ⊗ v,w′ = v′ ⊗ v′ with v ⊥ v′ and thus of the maximum

distance ||w − w′|| =
√

2n. Thus, if we want to decrease the diameter, we

must partition X into subsets, each of which has less than 2
(

4p
p−1

)
vectors, so

the number of subsets is at least

|X|
2
(

4p
p−1

) =

1
2

(
4p
2p

)
2
(

4p
p−1

) =
1

4

(3p+ 1) · · · 92p+ 1)

(2p) · · · (p)
≥ 1

4
· (3

2
)p+1 ≥ C · (3

2
)
√

d
4 ≥ 1 · 1

√
d.

where d = n2 = 16p2 is the dimension of X.

Bollobás′ Thm

Recall: (Sperner's Thm)

Let F ⊂ 2[n] be: ∀A 6= B ∈ F , A ( B,B ( A, then |F | ≤
(

n
bn
2
c

)
.

LYM-Inequality: For such F ,
∑

A∈F
1

( n
|A|)
≤ 1.
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Theorem 9. (Bollobás′ Thm) Let A1, A2, ..., Am and B1, B2, ..., Bm be the

sequences of sets in [n] s.t.

� Ai ∩Bj 6= φ,∀i 6= j

� Ai ∩Bi = φ,∀i.

Then,
m∑
i=1

1(
ai+bi
ai

) ≤ 1

where ai = |Ai|, bi = |Bi|.

Remark. Condition: Ai ∩ Bj 6= φ,∀i 6= j can't be weakened to i<j, or the

base case doesn't hold any more. Counter example:

� A1 = {1} = B2, A2 = B1 = φ.

� A1 = {1} = B2, A2 = {3} = B1, A3 = {3}, B3 = {1, 2}

Remark. Bollobás =⇒ LYM =⇒ Sperner′s

Proof. Let X = ∪mi=1(Ai ∪Bi). We prove by induction on n = |X|.

Base case: n = 1↔ A1 = {1};B1 = φ, OK.

Assume this holds for |X| ≤ n− 1. For ∀x ∈ X, de�ne Ix = {1 ≤ i ≤ m :

x /∈ Ai}.

De�ne Fx = {Ai : i ∈ Ix} ∪ {Bi − {x} : i ∈ Ix}. Note that any set of _x

doesn't contain x, so Fx has less than n elements. Hence we apply induction

hypothesis for each Fx to get:

∑
i∈Ix

1(|Ai|+|Bi−{x}|
|Ai|

) ≤ 1 (1)
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We summing up the above inequalities for all x ∈ X to get:

∑
x∈X

∑
i∈Ix

1(|Ai|+|Bi−{x}|
|Ai|

) ≤ n (2)

For each i, it contributes either 0, or 1

(ai+bi
ai

)
or 1

(ai+bi−1
ai

)
to each x. The

term 1

(ai+bi
ai

)
corresponds to points x /∈ Ai∪Bi, thus this term appears exactly

(n− ai − bi) times.

While, the term 1

(ai+bi−1
ai

)
corresponds to points x /∈ Ai&x ∈ Bi, thus this

term appears exactly bi times.

(2) =⇒
m∑
i=1

[(n− ai − bi)
1(

ai+bi
ai

) + bi
1(

ai+bi−1
ai

) ] ≤ n

Since
(k−1

l )
(k
l)

= k−l
k
, we get 1

(ai+bi−1
ai

)
= 1

(ai+bi
ai

)
· ai+bi

bi
, plugging in,

m∑
i=1

[(n− ai − bi)
1(

ai+bi
ai

) +
ai + bi(
ai+bi
ai

) ] ≤ n

⇐⇒
m∑
i−1

n · 1(
ai+bi
ai

) ≤ n

⇐⇒
m∑
i=1

1(
ai+bi
ai

) ≤ n

De�nition 10. Let F be a �eld, a set A ⊂ Fn is general position if any n

vectors in A are linearly independant over F.

Examples. For a ∈ F, de�ne m(a) = (1, a, a2, ..., an−1) ∈ Fn(moment

curve). Then {m(a) : a ∈ F is a general position.
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Next, we use the so-called "general position" argument to prove a version

of Bollobás′s Thm, which is weaker than the previous one. But, on the other

hand, the condition can be generalized to Ai ∩Bj 6= φ for ∀i < j.

Theorem 11. (Bollobás′ Thm(the skew version)) Let A1, ..., Am be sets of

size r and B1, ..., Bm be the sets of size s, such that :

� Ai ∩Bj 6= φ,∀i 6= j

� Ai ∩Bi = φ,∀i.

Then,

m ≤
(
r + s

s

)
.

Proof. (By Lovász): Let X=∪i(Ai ∪Bi).

Take a set V ⊂ Rr+1 of vectors v = (v0, v1, ..., vr) such that

� V is in general position

� |V | = |X|

Identify the elements of X with vectors in V. Hence, we will view Ai as a

subset in V containing r vectors and Bj as a subset in V containing s vectors.

For each Bj, de�ne fj(x) =
∏

v∈Bj
< v,x >=

∏
v∈Bj

(v0x0 + · · ·+ vrxr).

For x ∈ Rr+1, note that

fj(x) = 0 iff < v,x >= 0 for some v ∈ Bj. (3)

Consider the subspace span Ai, which is spanned by the r vector in Ai,

since Ai ⊂ V ⊂ Rr+1 and V is in general position, we see that all r vectors in
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Ai are linearly independent and thus dim(spanAi) = r. So, (spanAi)
⊥ has

dimension 1. Choose ai ∈ (spanAi)
⊥ for i=1,...,m. Then for each v ∈ V ,

< v,ai >= 0 iff v ∈ spanAi iff v ∈ Ai. (4)

(O.W. v /∈ Ai, {v} ∪ Ai has r+1 vectors in V, which must be linearly inde-

pendent, contradicting to v ∈ spanAi)

Combing (3)&(4), fj(ai) =
∏

v∈Bj
< v,ai >= 0 i� Ai ∩Bj 6= φ

=⇒

 fj(ai) = 0,∀i < j

fj(ai) 6= 0,∀j

This shows that f1, ..., fm are linearly independent.

Next, we give an upper bound on the dimension of the space containing

f1, ..., fm.

Recall: fj(x) =
∏

v∈Bj
(v0x0 + · · ·+ vrxr), it is homogeneous with degree

s = |Bj| and r+1 variables (x0, x1, ..., xr). So this polynomial space can be

generated by all monomials of follows:

xi00 x
i1
1 · · · xirr , where i0 + i1 + · · ·+ ir = s, ij ≥ 0

There are
(
r+s
r

)
many solutions! So m ≤ the dimension=

(
r+s
s

)
.
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